Arizona Pioneer & Cemetery Research Project

Internet Presentation

Version 052409






Researching a Depression Era Mine

By: Allan Hall – APCRP Certified – Historian – Author

Photographs by: Author




No one can say with certainty how many adits and shafts have been dug in Arizona’s mining districts in historic times. Estimates vary considerably – even between state and federal agencies – but could range as high as 100,000 hard rock mine entrances. The vast majority fall into two broad categories:  “past producers” and “prospects” and nearly all of them are now abandoned. The steady decline in gold and silver production during the 1920’s and early 1930’s led to the closing of many mines. Settlements were dismantled, or simply abandoned, as people moved on to seek their livelihood elsewhere.


After the earlier pioneer period, another wave of migration occurred following the economic collapse and ensuing depression of the 1930’s. These were jobless and homeless men and families. For some of them, their attraction to the mining districts was the based upon the hope that a few ounces of gold each month could keep them fed. For others, a lode claim provided a cheap way to live on the land – whether there was any ore or not.1


Within a one mile radius of Morgan Butte peak2 there are more than sixteen mine shafts and adits. If you extend your search area to a radius of barely two and a half miles, there are several dozens of old mines and associated settlements. Although some of them date to the late 1800’s (and a few were good producers), the majority were established in the era that extended from the early 1900’s to the Great Depression of the 1930’s. Unfortunately, the geology in this locale virtually guaranteed that most mines would turn out to be a disappointment.  While there were many promising signs of ore, nature conspired to place much of it in small pockets and seams. What might appear to be high grade ore in an exposed vein could abruptly end after only fifty feet. More frequently, the vein contained low grade ore that could not offset the cost of extraction and processing for a small time operator.


Without investors, the only way to make a go of it at a low producing mine was to have little or no capital burden. This article will focus on a mine and small settlement near Morgan Butte that fits this broad characterization: It was a low producer, there was no mill or heavy equipment and, from appearances, there was virtually no operating overhead. Moreover, the features at this mine suggest that it worked during the 1930’s. By that time, most of the successful mines in the area had already run their course.


A Depression Era Mine


The subject of this article is a mine located about .75 miles NNE of Morgan Butte (roughly 36 degrees east of true north from the peak3). This area is literally blanketed with old (closed) and active lode mining claims and it includes a patchwork of patented land that is now deeded to modern day ranchers and investors.


We have discussed on many previous occasions the use of arrastres. They were the “poor man’s mill” – a way to cheaply pulverize silver or gold bearing rock.  The rate of processing would be limited to only a few hundred pounds of rock over a period of several days. Typically, an arrastre would add mercury to the ore charge to produce an amalgam. The older “Mexican” arrastres around Wickenburg were constructed using shaped stone in the walls and floor and did not use mortar or cement. Notice the more modern style of the arrastre at this site:


Figure 1, Depression Era Arrastre


Figure 1 shows an arrastre that is quite tall by normal standards, but which has a relatively narrow inner diameter. It was constructed with cement and boulders to a height of more than three feet. The area surrounding the arrastre is still quite flat and afforded ample space for a mule to pull the drag stone that crushed the ore charge.


Arrastres of this type can generally be classified as post-1900. In this example however, I believe it dates to the 1930’s, but not more than one decade earlier.  More on that subject later.



Figure 2, Top View of Arrastre


Figure 2 shows an inside view of the arrastre. The interior wall was fully encased with cement and the metal center post is, if anything, over engineered. The floor was built using stonework in the traditional manner. This is probably because a cement floor could not have withstood the abrasive effects of the drag-stone. The width of the floor was wide enough to accommodate a single drag stone – suggesting that only two or three hundred pounds of ore was processed during each cycle.


There are two particularly interesting features in the interior of the arrastre. First, notice the two drain pipes to the right of center. The lower pipe is in a metal plate, while the upper pipe protrudes through the wall to the left. Second, notice the abrasion and water marks on the center column and inner wall. 


There were several steps involved in the pulverizing and amalgamation process using an arrastre.  Once the ore charge had been thoroughly reduced to a fine sandy texture, water would be added to produce a fluid, muddy consistency. At that point, mercury would be added and the drag-stone operation might continue for another few days.  This was a critical point in the mixing of the ore/sand/mercury. The objective was to continually mix the components so that amalgamation (a chemical bonding between the ore and mercury) would occur.


Finally, more water would be added (that is, to the higher pipe) to produce a ‘soupy’ texture while the mule would continue to pull the drag stone, but at a slower rate. This would permit the amalgam to slowly settle to the bottom of the arrastre. The water would then be drained away and the waste material would be scooped out. The ore (gold or silver) would have settled on the floor, where it could be removed and separated from the mercury.


Figure 3, Drag Stone with Cable


Further evidence that this arrastre dates to the early decades of the 1900’s is provided in Figure 3.  Notice that this drag stone has a steel cable inserted on the top.  Older, ‘Mexican’ arrastres used drag stones that typically weighed more than 200 pounds and featured a bent iron rod protruding from the top.  I have never seen an ‘old’ arrastre (one that can be dated to the 1800’s) that used steel cable.  Aside from the use of this more modern feature, the drag stone does not weigh much more than 100 pounds.


Figure 4, Another Drag Stone with Cable


Figure 4 shows another drag stone at the arrastre. Like the previous one, it used a steel cable to connect to the rotating arm that was pulled by a mule or horse. In this case, the stone is nearly the width of the drag area inside the arrastre. Notice that five edge faces of this stone and the bottom have been worn smooth from use. There are relatively few drag stones at this site (only four that I have confirmed). Considering the relatively small capacity of the arrastre and the nature of the mine, I believe it was not used continuously. Otherwise, there would be more drag stones.


There are two unanswered questions in the views of the arrastre. What was the source of water and, importantly, did this arrastre use mercury for amalgamation?



Figure 5, Wet Panning Site above Arrastre


Approximately 100 yards above the arrastre there is a rather ingenious site that was used for separating ore from pulverized waste. Figure 5 shows a rock and cement structure that features a high wall, a ledge, two troughs and a drainage sluice (center of photo). This is the functional equivalent of a “panning” site that would have used water motion to separate the heavier gold ore from the lighter waste material. The design of this structure suggests to me that the arrastre did not rely upon mercury for amalgamation. In other words, the arrastre pulverized the ore bearing rocks and the “panning” site completed the separation of ore from waster material.


Another fifty feet or so beyond this structure there is a spring and well (perhaps more properly described as a cistern) that collected water for the arrastre and the washing/panning structure. See Figure 6.



Figure 6, Well/Cistern


Today, it serves as an occasional source of water for cattle that graze this section of land. The rancher has protected the opening to limit the inflow of debris. Not clearly visible, but importantly present, there is a metal ore car rail on the left side of the well opening. A feature such as this suggests that at least one of the three adits at this mine may have had rail tracks and an ore car. I have found no other rails outside the mine entrances, but tracks may remain in the interior of one or more adits.


 When I examined the well site, the water level was several feet deep and was clear. Decadal drought conditions have reduced the flow of water, but would still provide ample volume via gravity feed to the arrastre, panning area and modern water trough. There are old metal and modern PCV pipes running down the gulch that show the original and modern uses of the well. Seasonal rains certainly contribute to the water level and probably produce some rather significant runoff in this steep and narrow gulch.


Figure 7, Upper Adit


This mine certainly qualified as a “hard rock” operation.  As shown in Figure 7, the upper adit (one of three entrances) was dug and blasted into a very solid face of the mountain.  The adit gives an appearance of a gentle slope in a westerly direction. The gangue pile in front of the adit indicates that a sizable quantity of rock was removed to reach the primary ore vein. I have not entered this adit and I do not suggest that you do, either - it may serve as habitat for snakes and other wildlife. Furthermore, it is not possible to assess the condition of the adit beyond the first few feet. The sizable boulders at the entrance show that rock has sloughed off the wall above the mine.



Figure 8, Second Adit


Figure 8 shows the second adit, west of the one in Figure 7. Both adits probably contained narrow veins of ore that were extracted during the mining process. I found no evidence of copper in the first dump and it is likely that this mine was chasing a vein of gold. This adit is characteristic of the rock formations commonly found in this area. The adit literally follows the slope and angle of the vein. The height and width of the adit was very conservative - that is, you could enter without stooping, and the width at the entrance is not more than thirty inches.


Figure 9, Entrance to Adit 3


Figure 9 shows the entrance to the third adit, which is farther west of Figure 8. This is the only gated entrance at the mine site. It is again apparent that the entrance is quite small. The presence of the gate may indicate that a winze (vertical shaft connecting different levels of adits) lies beyond the entrance. Although one of my hiking partners is examining the entrance, we did not go beyond this opening. There is a rather sizable dump to the right of this photo that contains a few hundred tons of waste rock.


Notice that two of these adits contain structures built with wood posts, boards and planks. They appear to be in generally good condition. Each adit is protected by steep (nearly vertical) walls in this gulch, which has probably protected the wood from rapid decay.


Initial Assessment


An evaluation of the first nine photos suggests the following:


1.     The manner of construction of the arrastre clearly indicates the use of more modern materials than are found at the older, traditional “Mexican” arrastres.

2.     Although the wall was unusually high, the capacity for pulverizing ore was quite limited due to the narrow inner dimensions.

3.     Steel cables were not used for pulling drag rocks in the 1800’s or at any earlier point in time.3

4.     There is no convincing evidence that mercury was used at the arrastre. Instead, it is likely that the pulverized ore was taken to the “panning” site shown in Figure 5 where it could be gently washed to separate gold from the waste material.

5.     The adits at this mine were quite small. The development of this mine shows considerable economy in effort and expense. In other words, the adits were “just wide enough” to get the job done.

6.     In comparison to mines that were high producers of ore, the dumps at this site are not very large. This correlates with the small dimensions of the adits, but also suggests that the tunnels and drifts were not extensive. The “pay streak” at this mine, such as it was, must have been very narrow.

7.     Given the low-budget nature of this site, the recovery of a few ounces of gold each month could have kept this operation going.


Living Conditions


Finally, let’s examine the small settlement area near the mine. Figure 10 shows the only wall at this site. It is not a dry stack and, importantly, it is not adobe. Instead, this wall was built using a combination of mortar and local rock. The coloration on the right face indicates that dirt was added to the mixture, possibly as an “extender.”



Figure 10, Settlement Wall


The wall is actually pretty solid and shows no signs of weathering or erosion.  Notice also there are three crude bricks in the lower foreground near the cactus. I have not been able to piece together the surface features, but the bricks might have been used in a fire pit or some type of improvised oven. Because there are no other walls in the settlement area, it is possible this structure may have served as a “lean to.”



Figure 11, Debris Field at Settlement


Figure 11 shows a small portion of the trash dump at the mine settlement, which is uphill and out of view to the left. The trash extends left and downhill from this location for another twenty yards. Considering the modest nature of the mine, this is one of the largest debris fields I have encountered.


Other features of the settlement include the remains of a collapsed outdoor privy, a burned out metal drum that was lined with cement, and a few boards and pieces of pipe.  The metal drum may have been an open air fireplace. There is no evidence that heavy machinery or electrical generators operated at the mine. In other words, the work and living conditions were about as primitive as you could imagine.


Neal Du Shane and I have identified the location of three graves near the settlement and arrastre, but much more survey work is needed to develop a complete understanding of this site.


Historical Context


I do not know when this mine was established or how long it operated. Surface features strongly point to an occupation no earlier than the 1920’s, but it was more likely established in the 1930’s. The Great Depression was a brutal time for everyone – no jobs, lost homes and little hope. There are anecdotal records that up to 20,000 people lived in the mining districts east of Wickenburg during that time. This unnamed site is probably one of the locations where hopeful people tried to scratch out a meager living.


How to Get There


The route to this mine is provided in the attached topo map. I should point out that the old mine trail that crosses the northern flank of Morgan Butte is particularly rough. It absolutely requires high clearance 4WD or ATV type vehicles. The trail over Morgan Butte has not been maintained for many decades and is bare granite with deep runoff trenches in many locations. You should consider taking a back up vehicle if you make this outing. The trail continues east into a basin and passes on the southern slope of Table Mountain. It then drops into another basin before taking you to Roberts Camp near the upper end of Buckskin Canyon. As rough as the Morgan Butte segment of the trail can be, the portion that traverses Table Mountain is even worse.


1.     From the Wickenburg Rodeo Grounds, proceed east on Constellation Road.

2.     Turn right onto Buckhorn Road at GPS N 34o 02’ 32” by W 112o 36’ 46”.

3.     Turn left at GPS N 34o 02’ 55” by W 112o 33’ 24”.  This turnoff is easy to miss.  It is in the bottom of Slim Jim Creek (upper end). There have been several washouts in the past few years and the trail may not be obvious.  Following the trail, you will pass a corral and water tank on your right.  Remain on the trail.  It will lead you out of Slim Jim Creek.

4.     Bear right at a mine gate and continue up the trail as it climbs the northern flank of Morgan Butte in an easterly direction.

5.     You will come to a livestock gate shortly after cresting the top of the trail on Morgan Butte. This gate should always be closed.

6.     Continue down the trail until you arrive at GPS N 34o 03’ 40” by W 112o 32’ 41”.  You have the option of either parking in this saddle or driving down the trail to the mine settlement.  Caution – there are a lot of old nails on this portion of the trail. You might want to check it out on foot before choosing to drive to the settlement and arrastre.

7.     The arrastre is located at the bottom of the trail (south of the gulch) at GPS N 34o 03’ 35” by W 112o 32’ 38”.

8.     Follow the gulch uphill (west) to locate the adits, well and panning area.  See Reference #3 for the location of the first adit.




Before You Go


As previously stated, this area is a combination of private, deeded land and BLM/State Trust land. If you meet someone, they may very well be a land owner. Always be courteous and respectful. Ranchers have grazing leases in the area and have a vital economic interest in the well-being of their cattle.


Bring plenty of water and energy snacks for this outing. Be aware of weather conditions and high temperatures. The gulch and hillsides leading to the adits are covered with thick foliage. Dress appropriately.


Always let someone know where you will be and when you plan to return.




1.     There are quite a number of mine shafts in the area east of Wickenburg that are only eight to 15 feet in depth.  In most cases, there is little or no evidence of useful results. Many of these were “squatter” prospects. Others gave only the appearance of being a legitimate mining operation. Ranchers in this area have told me there were several thousand people living in the open desert and at old settlements during the Depression.

2.     USGS Morgan Butte Quadrangle map. Morgan Butte is located at N 34o 03’ 03” by W 112o 33’ 06” (WGS84). See sections 1-4 and 9-12 as the primary reference area in this article.

3.     Here are two sets of GPS coordinates. The first is for one of the adits and the second set is for the arrastre:  Upper adit – N 34o 03’ 24” by W 112o 32’ 49”. Arrastre – N 34o 03’ 35” by W 112o 32’ 38”.

4.     Steel cable (also known as wire rope) was first developed in the 1830’s by a German mining engineer named Wilhelm Albert and came into use in the late nineteenth century for hoisting heavy loads in deep mines. The cables shown in this article do not match the type of cable used in the latter portion of the 1800’s.


Arizona Pioneer & Cemetery Research Project

Internet Presentation

Version 052409






WebMaster: Neal Du Shane


Copyright © 2009 Neal Du Shane
All rights reserved. Information contained within this website may be used
for personal family history purposes, but not for financial profit of any kind.
All contents of this website are willed to the Arizona Pioneer & Cemetery Research Project (